<aside> <img src="/icons/home_gray.svg" alt="/icons/home_gray.svg" width="40px" />
</aside>
<aside> <img src="/icons/school_gray.svg" alt="/icons/school_gray.svg" width="40px" />
</aside>
<aside> <img src="/icons/book-closed_gray.svg" alt="/icons/book-closed_gray.svg" width="40px" />
</aside>
<aside> <img src="/icons/book-closed_gray.svg" alt="/icons/book-closed_gray.svg" width="40px" />
ongoing project
Keywords: odor inference, recurrent neural networks, mirrored Langevin dynamics
A blog for Computational Models for Fast Inference in the Mammalian Olfactory System
</aside>
<aside> <img src="/icons/book-closed_gray.svg" alt="/icons/book-closed_gray.svg" width="40px" />
Keywords: explore-exploit, stochastic Hopfield network, Thompson sampling, decision under uncertainty, brain-inspired algorithm, reinforcement learning
TL;DR: We demonstrate that a brain-inspired stochastic Hopfield network can achieve efficient, human-like, uncertainty-aware exploration in bandit and MDP tasks.
ICLR 2025 (see public review); Poster presentation at **MAIN 2024 and NAISys [**Poster]
</aside>